Source Parameter Estimation of Indian Ocean Earthquake from observation of GRACE Gravity Gradient Tensor
نویسندگان
چکیده
منابع مشابه
Location and dimensionality estimation of geological bodies using eigenvectors of "Computed Gravity Gradient Tensor"
One of the methodologies employed in gravimetry exploration is eigenvector analysis of Gravity Gradient Tensor (GGT) which yields a solution including an estimation of a causative body’s Center of Mass (COM), dimensionality and strike direction. The eigenvectors of GGT give very rewarding clues about COM and strike direction. Additionally, the relationships between its components provide a quan...
متن کاملObservation of vertical electron density profile in inospheric E-layer during Indian-Ocean earthquake on December 2004 using CHAMP satellite
This paper describes the observation and analysis of vertical electron density before major earthquake above the Sumatra-Malaysia region during Indian Ocean major earthquake in 2004 in Aceh, Sumatra. The electron density profile in E-layer of ionosphere a few days before earthquake and a few hours after earthquake have been observed using the data from the CHAMP satellite. The data obtained fro...
متن کاملobservation of vertical electron density profile in inospheric e-layer during indian-ocean earthquake on december 2004 using champ satellite
0
متن کاملCenter of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor
Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Geophysics
سال: 2017
ISSN: 2037-416X,1593-5213
DOI: 10.4401/ag-7394